
Visualizing UW Course Prerequisite Sequences
Dylan Babbs

University of Washington
dbabbs@uw.edu

Jordan Starkey
University of Washington

jds56@uw.edu

ABSTRACT
The UW Course Prerequisite Explorer provides an intuitive
experience to examine prerequisite course sequences.
Navigating the University of Washington course
catalog can be a difficult task – especially when dealing
with prerequisites. Currently, the course catalog lists the
prerequisites necessary in order to enroll in a specific
course, however, the description lists only the first degree
of prerequisites required. The goal of this tool is to improve
degree and coursework planning transparency by providing
an intuitive visualization experience using trees. The only
required action from the user is to input a course in order to
explore prerequisite sequences. The absence of any tool of
this capacity currently forces students to backwards trace
their course sequences to find course’s second (or higher)
degree prerequisites.

INTRODUCTION
Registration at the University of Washington occurs on a
quarterly basis. Course offerings are listed in the official
University of Washington course catalog. The course
catalog maintained by the university is rather
comprehensive; each course contains information regarding
the title, credit count, credit type, description, and required
prerequisites. All this information is very practical to a
prospective student – however, only the first degree of
required prerequisites are displayed. Only displaying the
first degree of required prerequisites creates a difficult
problem for a prospective student. For example, CSE 373:
Data Structures and Algorithms lists CSE 143 as the only
required prerequisite. Unbeknownst to a student browsing
the catalog, CSE 143 requires CSE 142 as a prerequisite.
Therefore, the prerequisites needed to enroll in CSE 373 are
both CSE 142 and CSE 143.

Figure 1: CSE 373 course description in the official University
of Washington course catalog.

In order to find if a student is eligible for the course, they
would need to manually browse the catalog in reverse,
searching for prerequisite requirements across the page, a
difficult and tedious task. At the University of Washington,
students are blocked from enrolling in certain courses they
don’t meet prerequisite requirements for. Required course
sequence for degree programs can be found on a
department’s website, however, each department maintains
their own website, leading to inconsistent pages and unique
formatting across official University of Washington
subdomains. Prospective students to a degree have no
consistent and aggregated location to find suggested course
sequence pathways.

The UW Course Prerequisite Explorer tool aims to improve
course selection and degree planning transparency by
providing an intuitive interface using tree visualizations to
explore course pathways. The tool allows the user to input a
course they are interested in exploring the sequence for.
Upon the user’s query, an interactive tree is generated with
the queried course as the parent node. The node’s children
are the course’s “post”-requisites, that is, they are the
courses a student becomes eligible to enroll in once they
complete the queried course. For example, a sample output
for a query of CSE 142, the introductory programming class
for undergraduates, would look like such:

Figure 2: Sample tree output for a query of "CSE 142"

RELATED WORK
The UW Course Prerequisite Explorer was inspired by two
different tools: UW Course Search (Brice Hulse) and
Course Focus (iSchool Course Sector).

UW Course Search
UW Course Search [4] is a tool developed by Brice Hulse
in 2016 which allows the user to compare UW course
catalog offerings with Rate My Professor ratings. The
project joined data scraped from the UW course catalog and
data scraped from ratemyprofessor.com. The tool allows a
user to query courses based off credit type, professor name,
department, level, and Rate My Professor scores.

Course Focus
Course Focus [1] is a tool developed by Course Sector (a
group from the UW iSchool’s DataLab). Course Focus
performs a very similar function to this project.
Importantly, however, Course Focus’ version provides no
visualization of the results. Course Focus lists the
prerequisites and “post”-requisites available for each
course, but the results are only listed in text. By
implementing a visualization of this concept, students will
more intuitively be able to explore multiple course
sequences, instead of the course before or after.

METHODS
Building the tool consisted of three different main areas:
data collection and aggregation, client side development,
and styling and layout.

Data Collection & Web Scraper
The majority of the project’s development time was
devoted towards data collection, aggregation, cleaning, and
munging. Using a python web scraper, implemented with
the Beautiful Soup library, the team scraped each
department’s course offerings on the official UW webpage.
The department’s course catalog lists all the courses taught
within the program, including outdated courses no longer
offered. One problem with such a comprehensive listing is
that some courses appear to be no longer offered, thus
making the data irrelevant. An example of this case can be
seen with CSE 326. After identifying tags that contain
course title and description, the team broke down the
description at an even lower level to add attributes to the
JSON element. These attributes included course title,

course description, credit count, and credit type. Many
attributes were dependent because nearly all non
introductory courses require prerequisites. However, not all
all course entries contained identical attribute fields. For
example, the professor attribute was only applicable to
courses in which the description contained a specific
professor. Other examples of dependent attributes include:
chosen prerequisites (those identified as either/or), required
prerequisites, and offered jointly (courses that are offered
jointly between different departments). Regex was used to
handle the string splicing of all these elements within the
data. Although this method isn’t entirely foolproof, the
team was happy with its accuracy. Accounting for all edge
cases was a difficult task due to the sheer amount of
assumptions that must be made when scraping a large
amount of unknown data. A simple list of key value pairs
displayed all courses within that program and their
respective information.

In order to nest all these courses within each other, a
recursive approach was used to search through each of the
chosen courses and required prerequisites. An attribute was
then added to each of the courses prerequisites that
delineated the attribute as chosen or required. The attribute
was then encoded by different colored links in the
dendrogram. The development team decided to recurse on
required prerequisites as the majority of chosen
prerequisites belonged to different departmental programs;
this would have resulted in an overcrowded tree. The
recursive algorithm added the respective element to a
course’s required prerequisites attribute. Next, the
algorithm searched the course elements’ required
prerequisite and added the respective elements into a
combined children attribute. The combined children
attribute is the attribute the D3.js code searched through in
order to create nested nodes. Finally, each program was
written to an external JSON file containing nested data. The
JSON files are read back and merged with a program
attribute to delineate between each overall list element. This
method drastically improved the JSON query speed on the
client side. The method searched for the program name in
the search field and then returned the elements of that
program to further expand on the search for the required
class. The scraper’s most difficult assignment to implement
was the recursive approach; this task required countless trial
and error as well as manual verification on the program’s
course catalog.

Client Side Development
The team implemented the visualization using the
JavaScript library Data Driven Documents (D3.js) [2]. An
example and guide created by Mike Bostock (co-creator of
D3.js) of collapsible tree diagrams served as the framework
of the tool’s interface [3].

Figure 3: An example of the D3 tree layout after a STAT 340
query.

In order to maintain node hierarchy, the team elected to
implement the D3 tree layout (d3.layout.tree()). This
implementation is important to maintain since it gave an
idea of foresight with degree planning. The tree layout is an
object containing a set of node objects, each of which is
characterized by the following attributes:

• parent: the parent node; the root node of the parent has
a null value

• children: an array containing the children nodes; the
leaves nodes have null value

• depth: the level of the node in the tree structure

• x: the x coordinate of the node

• y: the y coordinate of the node

The collapsible feature is important for the tool in order to
initially show nodes to the first degree and allow for further
exploration. Some programs had innumerable courses
nested within each other that if all paths were initially
shown at once, the visualization would be extremely
overwhelming for the user. Certain programs, such as
biology, required a scrollable canvas because the high
amount of nodes cause the tree to extend off the page. The
team decided to ignore the case of two nodes pointing to the
same child due to the fact that the child could be on
different hierarchical levels. Linking the two nodes across
different levels would shift the visualization into a force
graph or network layout, instead of a clean, well formatted
tree diagram. The D3 data join expects that each document
object model (DOM) node will correspond to a different
element in the data array. In order to deal with this problem,
the development team chose to have two elements in the
data array assigned to the same underlying object. In the
future, a potential improvement to this method would be to
define a custom join key function, which by definition
relies on a way to differentiate the data elements with an id
or key property to extend a node to its furthest parent link.

One of the biggest issues the team dealt with was querying
the nested JSON element for a specific course. In order to
improve the query speed, the team separated each of the
merged JSON program files into the same file, giving each
element an attribute of its program. The JSON-querying
algorithm first returns the element for that program,

followed by a recursive algorithm that searches through the
nested courses to access the right match based upon the
name attribute passed through the search field parameter.
To complete the process, the algorithm returned the element
to the top of the recursive call stack.

This element now appears as the root of the tree with the
first level children visible. The third degree from the node,
the children of children, are initially collapsed and not
visible. Drawing links between nodes required diagonal
objects. The diagonal objects (d3.svg.diagonal()) are
graphic elements which draw a cubic bezier curves between
two specific points. This type of object is widely used in the
D3 library, especially when needing to draw a connection
between two different elements in the drawing area. Each
node is represented with a small circle (SVG circle). The
circle is drawn at (x,y) position, with the x and y values
defined by the node object automatically calculated by the
cluster.nodes() function.

Styling & Layout
The team decided to keep color encodings to a minimal
throughout the project and to maintain a common color
palette. In addition, the team chose to keep interactions at a
minimal level in order to satisfy the goal of a simple,
intuitive approach for exploring course sequences. The tool
included a tooltip which displayed important course
attributes such course title, course description, credit count,
and credit type upon mouse over of a node.

Figure 4: Tooltip showing course title, course description,
credit count, and credit type.

The tooltip allowed for additional information in the case
the user wanted to learn about the full description of the
course. In addition, the tool implemented the open source
Bootstrap framework for basic styling and page formatting.

RESULTS
The tool, now informally available to the University of
Washington community, will improve the consumption of
information of the vast course catalog. The primary use
case of the tool is sequence exploration; the tool’s usage
will peak leading up to the few weeks before registration
period. We’ve determined through user interviews that a

student will use this tool alongside the official course
catalog. The two work well together, for they both provide
similar, yet different features at the same time. For
example, this visualization tool may not be the best way to
casually browse a department’s courses for the first time.
However, this tool’s value comes at a case when a user has
a general idea for what they are looking for in the catalog in
order to determine whether they are eligible to enroll in a
particular course or not. The team will continue to maintain
the project in the near future in order to ensure functionality
and smooth usage for the community.

DISCUSSION
The goal of this tool was to help improve academic
planning for students at the University of Washington. The
team believes the project has definitely filled a void for a
tool of this such. A primary reason for choosing this topic
for the final project was due to the high amount of interest
gathered from speaking with students during registration
periods. Students have proclaimed their stress about the
lack of a tool of this sort, for choosing courses to enroll can
be a difficult task without the strict guidance of an
academic advisor. The feedback received from this tool has
been overwhelmingly positive, both from the audience
during the final poster presentation on June 7th, 2016 and
from one-on-one user interviews conducted. In fact, the
team has received several recommendations to meet with
the University of Washington Information Technology
division (UW-IT) to suggest the implementation of a
similar tool across the enterprise-wide UW system.

FUTURE WORK
The UW Prerequisite Course Explorer can be expanded in
two major capacities: degree planning integration and user
academic progress integration.

Degree Planning Integration
UW offers information for each department’s admission
and graduation requirements. The team could extend the
tool to include this information in order to guide the user on
the required courses needed for admission or graduation.
Combining this information with prerequisites already
visualized in the tool would provide a seamless academic
planning experience.

User Academic Progress Integration
Implementing optional user input fields for courses
previously enrolled will allow the tool to tailor a custom
visualization specifically for the user. For example, the tool
would hide the courses previously enrolled in to reduce
clutter and focus on the courses a user would be interested
in. Ideally, an open API from UW-IT allowing access to a
user’s transcript would be a great addition in order to
immediately grab a student’s academic progress, but this is
unlikely to ever happen due to privacy reasons.

REFERENCES
1. Coursector CourseFocus.

http://www.coursector.org/coursefocus/.
2. Data Driven Documents. https://d3js.org/.
3. Data Driven Documents: Collapsible Trees.

https://bl.ocks.org/mbostock/4339083
4. UW Course Search. http://uwcoursesearch.com/.

